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Humans are still the best lossy image compressors
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Abstract

Losky image compression has been studied extensively in the context of typical loss functions
such as RMSE, MS-SSIM, etc. However, it is not well understood what loss function might
be most appropriate for human perception. Furthermore, the availability of massive public
image datasets appears to have hardly been exploited in image compression. In this work,
we perform compression experiments in which one human describes images to another, using
publicly available images and text instructions. These image reconstructions are rated by
human scorers on the Amazon Mechanical Turk platform and compared to reconstructions
obtained by existing image compressors. In our experiments, the humans outperform the
state of the art compressor WebP in the MTurk survey on most images, which shows that
there is significant room for improvement in image compression for human perception.
Data: The images, results and additional data is available at https://compression.
stanford.edu/human-compression.

Introduction

Since the advent of electronic media, image compression has been studied exten-
sively, leading to multiple image formats and compression techniques such as PNG
1, JPEG [2], JPEG2000 [3], JPEG XR [4], BPG [5] and WebP [6]. In order to
achieve significant reduction in image size, most compression techniques allow some
loss while compressing images. However, the loss functions used do not correspond
to human perception, and the resulting images may be blurry and unnatural at high
loss levels. The left two panels of Figure (1] show an example in which compression
and reconstruction using WebP [6] results in a severely blurred image.

It seems natural to posit that better compression results can be achieved using
a loss function optimized for human perception. We refer to such a loss function as
“human-centric.” The rightmost panel of Figure [1| shows an example of a possible
human-centric reconstruction which prioritizes image content over pixel-by-pixel fi-
delity of grass texture. Indeed, there has been a large body of work in the computer
vision community [7][8][9] in order to better understand human perception, and hence
a loss function governing human vision. Some compression methods, for example, take
advantage of the fact that human vision is more susceptible to differences in intensity
than in color, and quantize color space more crudely than intensity space in order to
achieve better compression performance.
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Figure 1: Giraffe image along with WebP and human reconstructions of similar sizes.

Unfortunately, despite these efforts we still lack a single metric that accurately
summarizes the human perception loss. To assess the importance of a human-centric
loss function, we present the results of image compression experiments performed by
humans. In our human compression experiments, two humans communicate through
a text chat system in which one “describer” human describes an image to a “re-
constructor” human via text instructions. In order to emulate the human ability to
perceive and recognize scenes based on prior memory or knowledge of locations or
objects, our human compression scheme allows the describer to share URL links to
reference images in the text chats from contextually similar images that are publicly
available on the web. The describer may also send the reconstructor text instructions
for manipulating the images in order to better approximate the describer’s image.
By employing the growing repertoire of publicly available image databases, our ex-
periment is designed to understand the limits of human-centric compression in the
context of side information.

To determine the quality of the reconstruction, we solicit human opinion on the
reconstructed image using the Amazon Mechanical Turk (MTurk) platform [I0]. The
compressed size of the text chat in our framework represents the size of the compressed
image, and the MTurk score is considered the (negative) “loss” associated with human
compression. We present the results of human compression on 13 high-resolution
images of different types. The results show that our human compression scheme
performs better than the WebP compressor on 10 out of 13 images.

Related Works

There has been significant work on human-centric compression, and attempts to quan-
tify human perception. Many commonly used compressors such as JPEG, JPEG2000
and WebP already attempt to implicitly capture properties of human perception. For
example, the human psychovisual system is prone to discarding sharp edges in im-
ages, so JPEG quantizes high frequency components heavily. The MS-SSIM metric
was developed in order to exploit image similarity, and is used by [11] and [12] for op-
timizing image compression. The compressor Guetzli [13] includes a perceptual JPEG
encoder optimized for a new image similarity metric dubbled “butteraugli” [14]. More
recently, [15] trained a neural network to predict human perceptual quality scores on
a large dataset of human-scored images.



Another interesting line of work attempts to capture the effects of human per-
ception by using generative models for lossy compression, which implicitly capture
distributions of natural images. Then, discriminator models are used to train the
generative models instead of image similarity metrics like RMSE or MS-SSIM. Fur-
thermore, the discriminator models are themselves trained to distinguish between
natural and synthetically generated images. For example, [16] uses GANs (Genera-
tive Adversarial Networks) to obtain visually pleasing images at low bitrates.

Video encoders such as MPEG [17] attempt to exploit extreme structural similarity
(i.e., translational similarity) between adjacent video frames. However, apart from
video data, not much work has been done on utilizing semantically similar (i.e., images
containing similar high-level features such as objects, persons, etc.) or structurally
similar images for compression.

Methods

Here, we describe our human compression scheme. Our setup involves two distinct
humans, referred to as the describer and reconstructor, as presented in the introduc-
tion.
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Figure 2: Block diagram showing the human compression process. The describer
attempts to describe the image with URL links and text instructions. The describer
can see the image as it is being reconstructed and can also hear the reconstructor’s
voice.

For every input target image, the roles of the describer and reconstructor are as
follows:

e Describer: Analyzes/recognizes the input image and informs the reconstructor
of the necessary steps to best recreate the target image. The describer commu-
nicates with the reconstructor only via a real-time text chat and may view the
reconstructed image in progress, as well as hear verbal communications from
the reconstructor.



| nttps://www.worldwildlife.org/habitats/grasslands

try transformations
elongate the fence bit
only focus on the vertical...

there's a line of shrubbery that goes across the middle third of the image...
that's the largest bush in the pic

so keep the others sizes equal to or smaller that that and make it look
continuous

and make sure to make the bushes smaller as you work your way up so
that there's a sense of depth...

there will be a line of tiny shrubs along that line...
the line itself starts about a quarter from the left...

Try and make the grass look less tall on the bottom...

when you're done with that take a look at these
https://public-media.smithsonianmag.com/filer/32/f2/32f24473-b380-435-9
4df-da0e58644439/16301090250_acf80be87f_o.jpg
https://img.purch.com/w/192/aHR0OcDovL3d3dy5saXZIc2NpZW5jZS5jb20v
aW1hzZ2VzL2kvMDAwWLzA20C8wOTQvaTMwMC9naXJhZmZILmpwZz8x
NDA1MDA4NDQy

sure

while you're editing that giraffe

its spots are too dark

make it look like the other giragge...

make the right one bigger than the left

make the heads level

wait back

put the left one where it was before

good

now move the right giraffe to the left so that their necks cross
good

move them both to the center

make them both taller as well

their heads should be above the middle line of shrubs...

| reconstruction Original image
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Figure 3: Human compression process for the giraffe image (simplified). The text
on the right shows text communications sent from the describer to the reconstructor.
Various stages of reconstruction are shown, describing (i) the background grass and
bush and (ii) the giraffes. Internet links (blue arrows) to a publicly available images
are may also be included.



e Reconstructor: Interprets text instructions from the describer in order to
produce a reconstruction of the original image. The reconstructor is not per-
mitted to view the original image until the reconstruction is complete, but may
communicate with the describer.

Unlike machine-based compression schemes, our human compression scheme involves
two streams of one-way communication, one text-based from the describer to the
reconstructor, and one in any format from the reconstructor back to the describer.
In our scheme, only the text transcript from the describer to the reconstructor is
considered to be the “compressed” representation of the input image; any communi-
cation from the reconstructor to the describer is not counted towards the size of the
compressed image.

To understand why only the text communication from describer to reconstruc-
tor is included in the final compressed representation of the image, we compare our
human compression scheme to a machine implementation of the same. In our ex-
periments, the compression process involves communication between a describer and
reconstructor in order to produce a reconstructed image, as well as the text transcript.
In a machine implementation, the compression process again involves describer and
reconstructor parties, but only generates the text transcript. A reconstructed image
would instead be produced by a decompression process that executes the instruc-
tions in the text transcript and simulates the communication from the reconstructor
to the describer. The decompression process, by definition, is such that the recon-
structor behaves identically as it did during the compression process, meaning that
only the describer’s instructions are needed for decompression, and is the justifica-
tion for counting only descriptions flowing to the reconstructor in the overall size of
compressed files (cf. e.g., [I§]). As a result, in our human-based implementation
of a compression scheme, only the communication from describer to reconstructor is
saved.

Implementation Details

The describer is provided an input image for compression, and a Skype call is initiated
between the describer and reconstructor with the following restrictions. First, the
describer may only communicate to the reconstructor through the inbuilt Skype text
chat. The describer turns off their outgoing audio/video to avoid inadvertently leaking
information to the reconstructor. Now, the reconstructor may communicate verbally
with the describer through audio/video/text chat. Finally, the reconstructor may
share partial, in-progress reconstructions with the describer in real time using Skype’s
screen share feature.

With these restrictions in place, the describer begins to send a series of instruc-
tions for the reconstructor to attempt image reconstruction. Generally, the describer
may send URL links to images that already exist on the internet, as well as spe-
cific text instructions for altering the image. A variety of image editing tasks may
be sent, including: spatially translating image elements, performing affine or per-
spective transformations, erasing or adding certain objects in the image, enlarging a
portion of the image, compositing multiple images, etc. Figure |3| shows parts of the



reconstruction process for the giraffe image.

When reconstruction has been completed to the level of the describer’s satisfaction,
the experiment is stopped. The Skype text transcript containing all instructions
from the describer to the reconstructor is saved. Finally, the transcript is processed
by removing timestamps and compressing it using the bzip2 [19] compressor. The
bzip2 encoded Skype transcript represents the final compressed representation of the
input image. The quality of image reconstruction can now be compared to that of a
standard lossy image compressor, as described in the next section.

Experiments
Data Collection

We first created a data set of original images that are not publicly available on the
web. The creation of original images prevents trivial encoding via an exact copy of a
non-original picture. Original images were captured with a digital camera or smart-
phone camera at high resolution. A wide variety of images (e.g., faces, landscapes,
sketches, etc.) unknown to the describers and reconstructors were captured for the
experiments. From these, we selected 13 diverse high-resolution images for our com-
parison experiments. The images and additional details are available in the appendix
and at https://compression.stanford.edu/human-compression.

Fxperimental Setup

We describe the experimental procedure for evaluating the quality of reconstructions
by human compressors and WebP:

1. Human compression: The input image is compressed and reconstructed by
the human compression system using the previously described procedure. The
size (in bytes) of the compressed text instructions is recorded.

2. WebP compression: The WebP compressor is used to lossily compress the
input image into a size similar to that of the compressed human text instruc-
tions.

3. Quality evaluation: We compared the quality of WebP and human com-
pressed images using human scorers on the MTurk platform.

WebP Compression

WebP [6] is a relatively recent image compressor released by Google. We chose WebP
as the reference compressor for comparing the human reconstruction quality since
WebP outperforms JPEG and JPEG2000 at the high compression levels achieved by
the human compression scheme. This is illustrated in Figure

Even when compressing images using WebP at the lowest allowed quality level
(quality parameter set to 0), the compressed files were much larger than those of the
human compressors. As a result, we first reduced the resolution of the images before
compressing with WebP with quality parameter 0 in order to attain the target size,
always erring on the side of the WebP file being larger than that associated with the
human compressor.


https://compression.stanford.edu/human-compression

(b) JPEG2000

Figure 4: Comparison of JPEG, JPEG2000 and WebP at a high compression level.

Quality Evaluation using M Turk

The second image is a reconstruction of the first image.

« Compare the two images and rate your level of satisfaction from the reconstruction using the scale below (1=completely unsatisfied, 10=completely satisfied).

Original Image: Image Reconstruction:

M“l::n:lu YO

|
»

¥
Level of Satisfaction:
© 1 (completely unsatisfied) 2 3 4
5 6 7 8 9
" 10 (completely satisfied

Figure 5: A screenshot of the Mturk survey.

We compare the quality of compressed images using human scorers (workers) on
Amazon Mechanical Turk (MTurk) [10], a platform for conducting large scale sur-
veys. For each image, we display the original image and a reconstructed image, and
ask workers to rate the reconstruction on a scale of 1 to 10. Since human percep-
tion is not yet well understood nor defined, we defined the scale on a general “level
of satisfaction” with the reconstruction, rather than a specific metric like accuracy.
For every experiment and for both types of reconstruction (human compression and



Tmage Original | Compressed chat | WebP size Mean score Median score
size (KB) size (KB) (KB) Human | WebP | Human | WebP

arch 1119 3.805 3.840 4.04 5.1 3 5
balloon 92 1.951 2.036 6.22 5.45 7 6
beachbridge 3263 4.604 4.676 4.34 3.92 4 4
eiffeltower 2245 4.363 4.394 5.98 5.77 6 6
face 1885 2.649 2.762 2.95 5.47 3 6
fire 4270 2.407 2.454 6.74 5.09 7 5
giraffe 5256 3.107 3.144 6.28 4.48 7 4
guitarman 1648 2.713 2.730 4.88 4.07 5 4
intersection 3751 3.157 3.238 6.8 4.15 7 4
rockwall 4205 6.613 6.674 4.41 4.85 4 5
sunsetlake 1505 4.077 4.088 5.08 4.82 5 5
train 3445 1.948 2.024 6.85 3.62 7 3
wolfsketch 1914 0.869 0.922 8.25 3.46 9 3

Table 1: Original image size and compressed sizes along with mean and median Mturk
scores for human and WebP reconstructions. Best results are boldfaced.

WebP), we collect 100 survey responses and obtain summary statistics. Figure
shows a screenshot of the MTurk survey as seen by the workers.

(a) Original (b) WebP (c) Human reconstruction

Figure 6: Original wolfsketch image along with the WebP and human reconstructions.

Results

Table [I] shows the results of our human compression scheme and MTurk evaluation
on 13 diverse high-resolution images. The human compressor was ranked higher than
WebP on 10 out of the 13 images from the dataset. Qualitatively, the human recon-
structions seem more natural and sharper to the MTurk workers, as compared to the
WebP compressed images (see Figures [1] [6] [7) while still achieving high compression
ratios, ranging from around 100x to 1000x.



(a) Original (b) WebP (¢) Human reconstruction

Figure 7: Original face image along with the WebP and human reconstructions.

To better understand the results, we discuss some specific examples. For the gi-
raffe image (Figure (1)), we suspect that human compression achieved a better rating
than WebP because human scorers give more priority to image sharpness over ac-
curacy. In contrast, for the face image (Figure @ human compression achieved a
significantly lower quality score than WebP. We hypothesize that this is because the
identity of the human being is more important than other semantic features of the
image (such as facial blemishes). On the other hand, humans achieve a much better
score than WebP for the wolfsketch image (Figure @, likely because differences in the
facial features of an animal are not significant to human scorers. We also observed
that human compression achieved better compression ratios and MTurk scores when
similar images were publicly available. This was the case for images of famous mon-
uments such as the Eiffeltower image, and for the intersection image where Google
Street View provided images of similar road intersections.

Discussion & Conclusion

We designed an experiment to better understand the potential for improving lossy
image compression based on a human-centric loss. Using two humans playing the
roles of describer and reconstructor, we compressed 13 diverse images of landscapes,
portraits, animals and urban settings. We evaluated the quality of human compres-
sion by comparing their reconstructions with WebP compressed images. On most of
our natural images, the human reconstructions are preferred over the WebP recon-
structions. These results suggest that the human compression process was better at
identifying and preserving image properties that are relevant to human scorers. This
highlights the fact that there is significant room for improving image compression
using human-centric loss functions in the current era of increasingly comprehensive
public image databases.

The human compression scheme is able to exploit semantically similar images quite



effectively during compression. However, most popular compressors do not appear to
take advantage of this rich public resource. Our experiment suggests that effective
utilization of semantically and structurally similar images (or parts of images) can
dramatically improve compression ratios. This is particularly relevant today, when
images can be easily found using image search tools such as the one offered freely by
Google.

While the human compression framework is useful as an exploratory tool, it is
clearly not practical due to its labor-intensive nature. We did not strive to optimize
our protocols in any way, and we could have undoubtedly achieved substantially
better compression and reconstruction scores had we done so. Notably, each of the
image reconstructions took a few hours to complete. Furthermore, redundancies
in English language resulted in sub-optimal compression, even though this is partly
resolved by the use of bzip2. Our drawing skills, use of rudimentary software for image
editing, inefficiencies due to occasional misunderstandings of describer instructions
by the reconstructor, and the difficulty of manually searching for similar images all
contributed to transcript size. Improvements on any of these fronts would further
result in improved image reconstruction quality.

We plan to use the insights obtained from this work to build an image compressor
that is both optimized for human perception loss and able to utilize side information
in the form of publicly available databases. We look to the work in [I5], which trains
a neural network to predict human scores, as a strategy for training machine-based
compressors for the human perception loss. We also expect to take advantage of
reverse image search tools in order to better utilize side information. We believe
these techniques will be key to significantly improved lossy image compression.

Our work was inspired in part by Claude Shannon’s 1951 paper [20], where hu-
mans were used to establish an upper bound on the fundamental limit of English
language compression. At the time, humans were better compressors than any prac-
tically implementable algorithm, and the paper motivated subsequent developments
in text compression to match and eventually surpass the 2.3 bits/symbol shown to
be achievable by human compressors. Similarly, we hope that the performance we
showed for human-based image compression will motivate and guide construction of
lossy image compression algorithms that will achieve and eventually surpass human
performance.
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Appendix
Additional details

Tables [2| and [3| contain additional details about the images and the mechanical turk
experiments.

Image Original WebP Original | Compressed chat | WebP size
resolution resolution | size (KB) size (KB) (KB)
arch 1762 x 2286 | 506 x 656 1119 3.805 3.840
balloon 1024 x 683 | 630 x 420 92 1.951 2.036
beachbridge | 4032 x 3024 | 500 x 375 3263 4.604 4.676
eiffeltower | 2448 x 3264 | 492 x 656 2245 4.363 4.394
face 3024 x 4032 | 435 x 580 1885 2.649 2.762
fire 3036 x 4048 | 375 x 500 4270 2.407 2.454
giraffe 5472 x 3648 | 528 x 352 5256 3.107 3.144
guitarman 1136 x 640 550 x 310 1648 2.713 2.730
intersection | 3024 x 4032 | 450 x 600 3751 3.157 3.238
rockwall 3036 x 4048 | 531 x 708 4205 6.613 6.674
sunsetlake | 3264 x 2448 | 1148 x 861 1505 4.077 4.088
train 4032 x 3024 | 340 x 255 3445 1.948 2.024
wolfsketch | 2698 x 3539 | 290 x 380 1914 0.869 0.922

Table 2: Resolution and original/compressed size for the images. Chat transcripts were
compressed with bzip2. WebP resolution was reduced till the file size just exceeded the
compressed chat transcript size, keeping quality parameter 0 and aspect ratio fixed.

Tmage Mean score Median score Standard deviation
Human | WebP | Human | WebP | Human WebP
arch 4.04 5.1 3 5 2.27 2.11
balloon 6.22 5.45 7 6 2.3 2.54
beachbridge | 4.34 3.92 4 4 2.27 2.17
eiffeltower 5.98 5.77 6 6 2.2 2.15
face 2.95 5.47 3 6 1.87 2.01
fire 6.74 5.09 7 5 2.31 2.25
giraffe 6.28 4.48 7 4 2.37 2.08
guitarman 4.88 4.07 5 4 2.55 2.03
intersection 6.8 4.15 7 4 1.9 2.17
rockwall 4.41 4.85 4 5 2.33 2.27
sunsetlake 5.08 4.82 5 5 2.33 2.34
train 6.85 3.62 7 3 2.3 2.1
wolfsketch 8.25 3.46 9 3 2.03 1.94

Table 3: Mean, median and standard deviation of Mturk scores for human and WebP
reconstructions. Best result for each image is boldfaced.



Images

This section contains all 13 original images along with their WebP and human recon-
structions.

(a) Original (b) WebP (¢) Human reconstruction

Figure 8: Original arch image along with the WebP and human reconstructions.
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(a) Original ) WebP (¢) Human reconstruction

Figure 9: Original balloon image along with the WebP and human reconstructions.



(a) Original (c) Human reconstruction

Figure 10: Original beachbridge image along with the WebP and human reconstruc-
tions.

(a) Original (c) Human reconstruction

Figure 11: Original eiffeltower image along with the WebP and human reconstruc-
tions.



(a) Original (b) WebP (c) Human reconstruction

Figure 12: Original face image along with the WebP and human reconstructions.

(a) Original (b) WebP (c) Human reconstruction

Figure 13: Original fire image along with the WebP and human reconstructions.
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(a) Original (b) WebP (c) Human reconstruction

Figure 14: Original giraffe image along with the WebP and human reconstructions.



(a) Original (b) WebP (¢) Human reconstruction

Figure 15: Original guitarman image along with the WebP and human reconstruc-
tions.

(a) Original (b) WebP (¢) Human reconstruction

Figure 16: Original intersection image along with the WebP and human reconstruc-
tions.

(a) Original (b) WebP (¢) Human reconstruction

Figure 17: Original rockwall image along with the WebP and human reconstructions.



(a) Original (b) WebP (¢) Human reconstruction

Figure 18: Original sunsetlake image along with the WebP and human reconstruc-
tions.

(a) Original (b) WebP (¢) Human reconstruction

Figure 19: Original train image along with the WebP and human reconstructions.

(a) Original (b) WebP (c) Human reconstruction

Figure 20: Original wolfsketch image along with the WebP and human reconstruc-
tions.



