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ABSTRACT

General intelligence involves the integration of many sources of information into a coherent, adaptive model of the world. To design and
construct hardware for general intelligence, we must consider principles of both neuroscience and very-large-scale integration. For large
neural systems capable of general intelligence, the attributes of photonics for communication and electronics for computation are
complementary and interdependent. Using light for communication enables high fan-out as well as low-latency signaling across large systems
with no traffic-dependent bottlenecks. For computation, the inherent nonlinearities, high speed, and low power consumption of Josephson
circuits are conducive to complex neural functions. Operation at 4 K enables the use of single-photon detectors and silicon light sources, two
features that lead to efficiency and economical scalability. Here, I sketch a concept for optoelectronic hardware, beginning with synaptic
circuits, continuing through wafer-scale integration, and extending to systems interconnected with fiber-optic tracts, potentially at the scale
of the human brain and beyond.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0040567

I. INTRODUCTION

General intelligence is the ability to assimilate knowledge across
content categories and to use that information to form a coherent rep-
resentation of the world. The brain accomplishes general intelligence
through many specialized processors performing unique, complex
computations.1,2 The information generated by these processors is
communicated throughout the network via dedicated connections
spanning local, regional, and global scales.3 On the microscale, synap-
ses, dendrites, and neurons are specialized processors comprising the
gray matter computational infrastructure of the brain.4 On the
meso-scale, cortical minicolumns of 100 neurons act as specialized
processors,5 and on the macro-scale, brain regions play that role.6

Information is communicated between these modules via axonal fibers
that comprise the white matter communication infrastructure of the
brain. On short time scales, information processing occurs in synap-
ses,7 dendrites,8 and within single neurons.9 On longer time scales, the
information generated by minicolumns is communicated across wider
regions of the network so that the knowledge of specialized processors
can combine in a comprehensive interpretation of a subject.10 The
utilization of many specialized processors combining their shared
computational resources across many scales of space and time enables
the brain to achieve general intelligence.1,2

Computation and communication are the complementary pillars
of neural systems. Hardware for artificial general intelligence (AGI)

will achieve the highest performance if complex, local processors can
pool the information from their specialized computations through
global communication. Electrons excel at computation, while light is
excellent for communication. In silicon hardware, monolithic optical
links between a processor and memory have been demonstrated.11

These devices were fabricated in a 45-nm CMOS node with no in-line
process changes, and off-chip light sources were utilized. Such work is
driven by the desire for increased communication bandwidth in multi-
core architectures. These architectures continue to expand into on-
chip networks, in some cases resulting in highly distributed, brain-
inspired systems implemented with CMOS electronics.12–17 As com-
puting grows more distributed, communication becomes a bottleneck.
A primary challenge affecting further chip-scale electronic-photonic
integration is the difficulty of achieving a light source on silicon that is
robust, efficient, and economical.18,19 Lessons learned from very-large-
scale integration (VLSI) inform us that economical fabrication of inte-
grated circuits comprising simple components is necessary for scaling.
In this regard, difficulties associated with integrated light sources are
the most significant impediment to optoelectronic VLSI.

It is the perspective of our group at NIST that hardware incorpo-
rating light for communication between electronic computational
elements combined in an architecture of networked optoelectronic
spiking neurons may provide potential for AGI at the scale of the
human brain. Spiking neurons are circuits that integrate signals over
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time and produce pulses when a threshold is reached. The spiking
neurons discussed here are optoelectronic in that the pulses communi-
cated from neurons to synapses consist of photons, while the compu-
tations performed within the neurons utilize electronics. Each neuron
contains a light source, which is driven electrically upon reaching
threshold. Each synapse contains a detector, which converts the optical
signal to an electrical current or voltage upon receiving a photonic
synapse event. Each neuron is a distinct entity, and no hardware com-
ponents are multiplexed to represent the operations of separate neu-
rons at different times. While much of present-day computing
infrastructure has evolved to implement a von Neumann architecture
performing sequential operations in the model of a Turing machine,
the functioning of neural systems departs considerably from this
model. Light has even more to offer in a neural computing context,
because communication across scales is indispensable. Further, the
spiking behavior of Josephson junctions (JJs) combined with the effi-
ciency of single-photon detectors (SPDs) make a compelling case for
optical integration with superconducting electronics.20,21 Such a choice
necessitates low-temperature operation near 4K. At this temperature,
silicon light sources become available,22 indicating that a major imped-
iment to optoelectronic VLSI many not be present in the supercon-
ducting domain. This article summarizes the reasoning behind the
assertion that superconducting optoelectronic systems have unique
potential to achieve general intelligence when considered from the per-
spectives of cognitive science and VLSI.

The unique cognitive capabilities of humans derive in part from
the scale of the brain, including the number of neurons and the com-
plexity of the communication network. While there is much to be
gained from artificial intelligence (AI) hardware at smaller scales, this
article considers technological pathways to large cognitive systems,
with tens to hundreds of billions of neurons, and communication
infrastructure of commensurate complexity. Such technology will
likely require many interconnected wafers, each packed densely with
integrated circuits. We may refer to this field of research as
“neuromorphic supercomputing.” The effort is in some ways more
akin to the construction of a fusion reactor or particle accelerator than
a microchip, and potentially offering a similar scale of societal benefit
in the form of an experimental test bed enabling the elucidation of the
mechanisms of cognition and the exploration of the physical limits of
intelligence.

II. NEUROSCIENCE AS A GUIDE

To guide the design of hardware for AGI, we must consider
insights from neuroscience regarding how neural systems integrate
information across space and time to accomplish cognition.3,10,23,24 A
brief summary is provided here, highlighting aspects most pertinent to
the design of hardware for cognition.

In the temporal domain oscillations and synchronization struc-
ture the activity of populations of neurons.10 The spiking activity of
neurons is observed to comprise nested oscillations across a range
of frequencies.25 On the fastest time scales of the brain, local clusters of
neurons engage in transient dynamical activity induced by the present
stimulus. These patterns of activity are referred to as gamma oscilla-
tions (80Hz), and activity in this band is modulated by lower-
frequency oscillations26,27 resulting from the combined activity of
neurons across larger regions of the network.28 These slower, broader
patterns are referred to as theta oscillations (6Hz), and neuronal

communication across a network depends upon information present
in gamma activity being structured into more complex syntax by
dynamics on theta timescales.29,30 This rich structuring of information
in time is enabled by the spiking behavior of neurons. Computation
and communication based on spikes facilitate a diversity of informa-
tion coding schemes with resilience to noise while maintaining high
energy efficiency due to sparse activity.

In the spatial domain, a feature of neural systems that will recur
in the present discussion is their modular, hierarchical construc-
tion.3,23,24,31 Neural systems are modular in that they are comprised of
local regions of densely interconnected structures with sparser connec-
tivity between such regions. Neural systems are hierarchical in that
this pattern repeats across spatial scales in a fractal manner: minicol-
umns aggregate into columns, columns into complexes, etc. This frac-
tal property is necessary to enable networks to scale arbitrarily, with
dynamics constrained only by the physical hardware and spatial extent
of the system rather than by the ability to communicate across the net-
work.32 Communication between distant modules is enabled by
power-law scaling: the number of connections being sent to distant
modules does not decay exponentially, but rather follows a power
law.33,34 The non-vanishing tail of long-range connections enables dis-
tant modules to quickly become correlated. In constructing hardware
for artificial intelligence, it is imperative to enable rapid communica-
tion without traffic-dependent bottlenecks. Modules must be able to
quickly engage in gamma activity, while signals from many intercon-
nected modules at multiple levels of hierarchy must be able to simulta-
neously transmit across the complex network. The specific time scales
defining behavior analogous to gamma and theta oscillations will be
determined by the underlying computational devices.

In the form of gamma activity, clusters of neurons represent spe-
cific content, and the information from these clusters must be shared
with other regions of the network to form a multifaceted representation
of a stimulus. This computation and communication is facilitated by
networks with a high clustering coefficient yet also an average path
length nearly as short as a random graph.38 In the language of network
theory, if node a is connected to node b, and b is connected to c, then
clustering quantifies the probability that a will be connected to c. Path
length quantifies the number of intermediate nodes that must be tra-
versed to get from one node to another along the network connections.
The average path length is determined by calculating this quantity over
all pairs of nodes in the network, and taking the mean. A network with
high clustering and low average path length is referred to as a “small-
world network.”39 Small-world networks are ubiquitous throughout the
brain3 and require long-range connections. In a random network, near
and distant connections are equally probable, so the average path length
across the network achieves a lower limit on path length for a given
number of edges connecting a given number of nodes. Figure 1 shows
the number of edges required per node to achieve a given average path
length as a function of the number of nodes in the random network.
For a modest network with one million nodes, each node must make
several thousand connections to maintain a path length of two. For the
case of a network with 108 nodes, each node must make over one hun-
dred thousand connections. This is similar to the hippocampus in the
human brain, with nearly 108 neurons, some with 50 000 or more
nearly random synaptic connections.10 Maintaining a short path length
across the network is critical for information integration, and is an
important motivator to use light for communication.
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At the device level, dynamical behaviors thought to be neces-
sary for attention, cognition, and learning, such as cross-frequency
coupling10 and synaptic plasticity,40–42 require complex capabilities.
Dynamical synapses, dendrites, and neurons allow one structural
network to realize myriad functional networks adapting on multiple
time scales. While light is excellent for communication, electrical
circuits are better equipped to perform these nonlinear, dynamical
functions. For communication and computation, neural informa-
tion processing will benefit immensely from optoelectronic
integration.

Figure 2 charts the structures present on various scales for biolog-
ical and optoelectronic hardware. The human brain has features span-
ning roughly eight orders of magnitude in size, from a nanometer to a
tenth of a meter. Across time, activity ranges from the 1ms timescale
of neurotransmitter diffusion across a synapse, through the 200ms
timescale of brain-wide theta oscillations, up to the memory retention
time of the organism. The speeds of devices and communication in
the brain are limited by the chemical and ionic nature of various oper-
ations. The maximum size of the brain may be limited by the slow
conduction velocity of ionic signals along axons. If the brain were
larger, signals would not have time to propagate between different
regions during the period of theta oscillations, and system-wide infor-
mation integration could not be efficiently achieved.10,36

Light and electronics together can enable communication and
computation across spatial and temporal scales. We have proposed
a specific approach we see as most conducive to large-scale imple-
mentation for AGI.20,21,36,43 The approach combines waveguide-
integrated light sources and SPDs for communication20,22 with
Josephson circuits for synaptic, dendritic, and neuronal computa-
tion.21,43 As illustrated in Fig. 2, these optoelectronic networks will
have features as small as 100 nm and potentially extend up to kilo-
meters. Neuronal interspike intervals can be as short as 50 ns, while
synaptic and dendritic processing occurs on the 50 ps timescale of
Josephson junctions. Time constants can be chosen across many
orders of magnitude, enabling information processing and memory
across time scales. Figure 2 is intended to emphasize that if commu-
nication barriers can be removed, neural systems of extraordinary
scale can be achieved.

FIG. 1. The average number of connections per node (�k ) required to maintain a
given average path length (�L) across a random network as a function of the total
number of nodes in the system (Ntot).

FIG. 2. Structure across scales. Biological systems have functional components from the nanometer scale (neurotransmitters, axonal pores) up to the full brain (0.3 m linear
dimension for full human cerebral cortex35). Speeds are limited by chemical diffusion and signal propagation along axons, which may ultimately limit the size of biological neural
systems.10,36 The time constants associated with chemical diffusion and membrane charging/discharging span the range from 1ms to 100 ms4,37 and dictate the speeds at
which information processing occurs. The wall at the right indicates the communication-limited spatial-scaling barrier. Optoelectronic devices rarely have components with criti-
cal dimension smaller than 100 nm, and optoelectronic neurons are likely to be on the 100-lm scale, with dendritic arbor extending for millimeters and axonal arbor in some
cases spanning the system. The time constants of these components can be engineered in hardware across a very broad range with high accuracy through circuit parameters,
enabling rapid processing as well as long-term signal storage. Optical communication enables optoelectronic systems to extend far beyond the limits imposed by the slow con-
duction velocity of axons.
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Schematic illustrations of the neurons and modular networks
under consideration are presented in Fig. 3. A neuron with a complex
dendritic tree is shown in Fig. 3(a). The neuron comprises excitatory
(Se) and inhibitory (Si) synapses feeding into dendrites (D) and the
neuron cell body (N). Upon reaching threshold, the transmitter (T)
produces a pulse of light that fans out across a network of waveguides
(not shown). Modular hierarchical construction is depicted in Fig.
3(b). The smallest blocks represent neurons, and their connections
predominantly reside within their local module (blue). Yet important
connections are made at all levels of hierarchy (red and dark green).
Hardware for AGI must employ modular, hierarchical networks of

complex neurons with rich dynamics that adapt on multiple
timescales.

III. SUPERCONDUCTING OPTOELECTRONIC SYNAPSES,
DENDRITES, AND NEURONS

Having chosen to communicate synaptic events with light, the
quantum limit is a single photon per synaptic connection. We have
designed a synapse [Fig. 4(a), Refs. 21, 36, and 43] that detects a single
near-infrared photon and requires no power to retain the synaptic
state, a feature enabled by the dissipationless nature of superconduc-
tors. The synapse utilizes a superconducting-nanowire SPD, which is
simply a current-biased strip of superconducting wire.44 To achieve
the desired synaptic operation, an SPD is combined in circuits with
Josephson junctions (JJs) and superconducting loops to achieve the
functions needed for neural information processing. In optoelectronic
synapses of this design, the current bias across a single JJ establishes
the synaptic weight [Isy in Fig. 4(a)]. This current bias can be dynami-
cally modified through various photonic and electronic means based
on control signals or network activity.

The signals from many synapses can be combined through trans-
formers coupled to dendrites or neurons [Fig. 4(b)]. Neurons con-
structed in this manner are highly modular in that synapses, dendrites,
and the neuron cell body itself are all based on the same core circuit,
comprising a superconducting quantum interference device (SQUID)
embedded in a flux-storage loop. SQUIDs are perhaps the most ubiq-
uitous of all superconducting circuits,45,46 often used as sensors due to
their extraordinary sensitivity to magnetic flux and low-noise opera-
tion. These properties make SQUIDs ideal circuits for dendrites and
neurons to perceive and respond to minute changes in analog signal
levels. Dendritic and neuronal nonlinearities are a natural consequence
of the JJ critical current, and can be shaped through the choice of
circuit parameters, such as loop inductances and resistances, as well as
dynamically with adaptive bias currents. Due to the prominent role of
superconducting current storage loops, we refer to these as loop neu-
rons. We refer to networks of loop neurons as superconducting opto-
electronic networks (SOENs). In the operation of loop neurons, a

FIG. 3. Block diagrams. (a) Optoelectronic neuron. Electrical connections are
shown as straight, black arrows, and photons are shown as wavy, blue arrows. (b)
Modular, hierarchical network construction. Here black arrows are photonic connec-
tions. Part (a) adapted from J. M. Shainline, IEEE J. Sel. Top. Quantum Electron.
26, 1 (2020). Copyright 2020 Author(s), licensed under a Creative Commons
Attribution (CC BY) license.43 Part (b) adapted from Shainline et al., J. Appl. Phys.
126, 044902 (2019). Copyright 2019 Author(s), licensed under a Creative
Commons Attribution (CC BY) license.36

FIG. 4. Circuit diagrams. (a) Superconducting optoelectronic synapse combining a
single-photon detector (SPD) with a Josephson junction and a flux-storage loop,
referred to as the synaptic integration (SI) loop. The synaptic bias current (Isy) can
dynamically adapt the synaptic weight. (b) Neuron cell body performing summation
of the signals from many synapses as well as thresholding. Here the neuronal
receiving (NR) loop is shown collecting inputs from two SI loops, but scaling to
thousands of input connections appears possible. Upon reaching threshold, the
transmitter circuit (amplifier47 and LED22) produce a pulse of light that communi-
cates photons to downstream synapses. The neuronal threshold current (Ith) can
dynamically adapt the neuronal threshold.
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single photon triggers a synaptic event, and spike-timing-dependent
plasticity is induced by two photons—one from each neuron associ-
ated with the synapse.

In addition to the choice of SPDs as the detectors in the system,
we must also select a light source, which must be fabricated across
wafers by the millions. Because our choice of detectors dictates cryo-
genic operation, silicon light sources are an option. The light sources
we have in mind are silicon LEDs,22 employing luminescence from
defect-based dipole emitters. From the perspective of VLSI, achieve-
ment of a silicon light source as simple as a transistor would be the
greatest contribution to the success of this technology. If cryogenic
operation enables both SPDs and silicon light sources, it will be worth
the added infrastructure for cooling. We further justify this decision in
Sec. IV.

To achieve complex neural circuits, we aim for monolithic inte-
gration of light sources, detectors, and superconducting circuit ele-
ments. Our group’s experimental progress toward this end is
summarized in Fig. 5. An important milestone was the demonstration
of an all-silicon monolithic optical link. We measured waveguide cou-
pling of light from micrometer-scale, all-silicon LEDs to integrated,
silicon-based SPDs on a photonic chip [Figs. 5(a)–5(c), Ref. 22].
Further progress on scalability and characterization of waveguide-
integrated SPDs for use in the synapses under consideration was also
presented in Ref. 50. The performance achieved in the first iteration of
these optical links was not yet adequate. The observed efficiency was
5� 10�7, while 10�3 or higher is desirable for large systems.36 Yet the

simplicity of both the source and detector made the fabrication and
demonstration of a monolithic optical link far easier than if room-
temperature operation were required. Subsequent work improved the
brightness of the sources by two orders of magnitude through opti-
mized fabrication procedures.51 Additional gains may result from opti-
mization of the diode structure used for electrical injection of carriers
into the waveguide where electron-hole recombination at emissive
centers produces waveguide-coupled luminescence. Elimination of
etched surfaces and proper passivation in the active region may signifi-
cantly reduce non-radiative recombination. Improvements to the opti-
cal structure may increase coupling efficiency from the emitters to the
waveguide mode. For this application, the light sources are only
required to produce incoherent pulses of 10 000 photons (1 fJ) at
20MHz when operating at 4K. Modest advances could enable silicon
light sources to meet these specifications.

We have also demonstrated superconducting amplifiers capable
of generating the voltage required to produce light from these sources
[Figs. 5(d)–5(f), Ref. 47]. Generating more than a millivolt with super-
conducting circuits is difficult, but the thin-film, micrometer-scale
cryotron demonstrated in Ref. 47 leverages the extreme nonlinearity of
the superconducting phase transition to rapidly generate high imped-
ance and voltage with low energy, thus driving a semiconductor light
source during each neuronal firing event. In Ref. 47, we demonstrated
the use of these amplifiers to drive the LED-SPD link of Ref. 22.
Fabrication of these devices appears compatible with silicon microelec-
tronic manufacturing, provided the high-temperature steps required

FIG. 5. Experimental progress toward superconducting optoelectronic networks. (a) Schematic of waveguide-integrated silicon LED. (b) Microscope image of a silicon LED
waveguide-coupled to a superconducting-nanowire detector. (c) Experimental data showing that light is coupled through the waveguide, while crosstalk to an adjacent detector
on the chip is suppressed by 40 dB. (a)–(c) Adapted from Buckley et al., Appl. Phys. Lett. 111, 141101 (2017). Copyright 2017 Author(s), licensed under a Creative Commons
Attribution (CC BY) license.22 (d) Schematic of the superconducting thin-film amplifier. (e) and (f) The resistive switch driving the LED. (e) Square pulses are driven into the
switch gate. (f) When the switch is driven, light is produced from the LED and detected by the SPD. (d)–(f) Adapted from McCaughan et al., Nat. Electron. 2, 451 (2019).
Copyright 2019 Author(s), licensed under a Creative Commons Attribution (CC BY) license.47 (g) Schematic of multi-planar integrated waveguides for dense routing. Adapted
from Chiles et al., APL Photonics 2, 116101 (2017). Copyright 2017 Author(s), licensed under a Creative Commons Attribution (CC BY) license.48 (h) Schematic of feed-
forward network implemented with two planes of waveguides. (i) Data from an experimental demonstration of routing between nodes of a two-layer feed-forward network with
all-to-all connectivity. (h) and (i) Adapted from Chiles et al., APL Photonics3, 106101 (2018). Copyright 2018 Author(s), licensed under a Creative Commons Attribution (CC
BY) license.49
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for dopant activation and contact annealing required for semiconduc-
tor devices are performed prior to the deposition of superconducting
thin films.

Following a neuronal spike, the light produced by an amplifier
driving an LED fans out across a network of micrometer-scale dielec-
tric waveguides terminating on the superconducting detectors at each
synaptic connection. We have demonstrated multiple vertically inte-
grated planes of these waveguides [Figs. 5(g)–5(i), Refs. 48 and 49],
and used them to implement the architecture of a feed-forward neural
network with two layers of 10 neurons per layer and all-to-all
connectivity.49

IV. THE LANDSCAPE OF RESEARCH IN PHOTONIC AND
SUPERCONDUCTING NEURAL SYSTEMS

This approach to neural computing resides at the confluence of
semiconductors, superconductors, and photonics, and should be con-
textualized with other work in these fields. It is clarifying to acknowl-
edge that nearly all efforts to use photonics or superconducting
electronics for neural systems are focused on the entirely reasonable
goal of doing useful computations with hardware that is available right
now. These efforts are valuable and promising for their own ends
without seeking brain-scale cognition. Comments here contrasting
SOEN hardware with other current efforts are not criticisms of any
work in the field, but rather explanation of the reasoning behind
SOENs for large cognitive systems. A short summary of other pho-
tonic and electronic efforts is provided here, and comprehensive
reviews of emerging neural hardware can be found in recent
literature.52–54

A. Semiconductor electronic neural systems

Given the extraordinary success of CMOS electronics, utilization
of that hardware platform is the clear place to begin a search for artifi-
cial neural circuits. The history of exactly this pursuit is rich,55–57

accomplished,58–62 and exciting advances lie ahead.63 So why advocate
for an alternative? To further explain why we place optical communi-
cation at the center of hardware development, I briefly summarize the
physical limitations of electrical interconnection networks.64 It is
impracticable in silicon electronics for a single device to source current
to many other devices. A shared communication network must be
employed. Switched media networks are used for this purpose. Each
device must then only communicate to the nearest switch in the net-
work. Because the communication infrastructure is shared, devices
must request and wait for access to the switch network to transmit
messages. This approach to communication leverages the speed of
electronic circuits to compensate for the challenge of direct communi-
cation. Limitations are reached when many devices must communi-
cate with many other devices simultaneously. While neural activity is
generally sparse, during high activity, such as coordinated gamma
bursting at the peak of a theta oscillation (Sec. II), many neurons must
communicate simultaneously across the network. Due to the traffic-
dependent bottleneck of shared interconnection infrastructure, as
more neurons are added to the network, the average rate of neuronal
firing events must decrease, and nested oscillations must shift to lower
frequencies due to delays. Activity is limited to frequencies much
slower than the brain in systems much smaller than the brain.
Integration of information across the network is limited by the com-
munication infrastructure.

B. Optical neural systems

One means to alleviate communication limitations is through the
use of optics. The field of photonic neural systems began65,66 with an
implementation of the Hopfield model.67 The objective was to com-
bine the parallelism and interconnectability of optics, which are linear
phenomena, with bistable optical devices to provide the thresholding
nonlinearity of the Hopfield model. The hardware proposed combined
compound-semiconductor LEDs with photodiodes and electronics for
an initial implementation of nonlinearity to be replaced by optical
bistable devices in subsequent generations. While LEDs and laser
diodes have become mature technologies, bistable optical devices have
not.

The field of photonic neural systems has since experienced an
immense diversification, with myriad efforts using free-space optics,68

fiber components,69 and on-chip integrated photonics.70–72 Along one
branch of this tree, excitable lasers have been explored as spiking neu-
rons.69 These lasers integrate several optical inputs, and release a laser
pulse upon reaching threshold. These devices can be extremely fast,
but consume too much power for scaling to the level of the human
brain. It is also difficult to tailor the neuronal responses, as they are
primarily determined by carrier and cavity dynamics, which are dic-
tated by basic physics and not easily adjusted with circuit parameters.
Excitable lasers can be used as spiking neurons in the broadcast-and-
weight architecture,73 wherein each neuron is assigned a wavelength,
and synaptic weights are established with microring resonators that
attenuate the optical signals, much like waveglength-division-
multiplexed fiber-optic networks. In conventional silicon photonics,74

such multiplexing employs around 10 channels. It may be possible to
extend this to 100,73,75 but even this limited number of channels would
require cumbersome control circuits to hold synaptic weights stable.
The requirement of precise control at every synapse as well as the
non-monotonic, rapidly varying Lorentizian line shape of microring
resonances is not optimal for large-scale, unsupervised learning.

Phase change materials have also been explored for neuronal
thresholding76 and as a means of implementing variable attenuation of
photonic signals to establish a synaptic weight.77 This approach
requires billions of photons to achieve synaptic weight modification.
Relying on the properties of a material to achieve the complex compu-
tations occurring at a synapse limits functionality as compared to
behaviors that can be tailored with integrated circuits.

Deep learning with continuous fields rather than spiking neurons
is also receiving attention, and networks of on-chip, cascaded
Mach–Zehnder interferometers are a prominent approach.70 Such net-
works excel at feed-forward processing operations, but are not condu-
cive to the recurrent networks employed by spiking neural systems
nor the activity-dependent plasticity necessary for unsupervised learn-
ing. The challenge arises because in meshes of interferometers, adjust-
ment of one phase modifies multiple synaptic weights. While such a
technique may be suitable for specific training algorithms employed in
supervised learning,78 it appears cumbersome for unsupervised learn-
ing in large neural systems, where local activity at each synapse
updates that synaptic weight.

Another exciting and related application space of photonics is in
reservoir computing. This field has been innovative and productive in
recent years.79–83 The objectives and hardware are only loosely related
to the subject of large-scale cognition considered here, so further dis-
cussion is omitted.
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As a broad point of contrast between the synapses discussed here
and other systems using light for neural computing, most photonic
neural systems encode information in the amplitude of optical signals
received at a detector, and synaptic weights are established through
modulation of the intensity of these optical signals. Whether phase
modulation or direct amplitude modulation are leveraged, encoding
synaptic weights in the intensity of light on a detector differs from the
synaptic operations we are pursuing, where light is used for binary
communication, and synaptic weights are established by electronic
responses. This approach minimizes the optical power required and
eliminates a source of noise. If synaptic weights are encoded in the
intensity of an optical signal, noise from the light source is convoluted
with the synaptic weight. With binary optical signaling the light level
incident upon a synaptic detector does not influence the electronic
response of the synapse, which is determined by the electronic circuits
reading out the synaptic receiver. A binary response can be achieved
with semiconductor receivers or superconducting circuits. In Ref. 50,
we have shown that the response of a superconducting SPD is inde-
pendent of the number of photons present in an incident pulse across
four orders of magnitude of input intensity. Because no information is
encoded in the light level, this form of optical communication does
not suffer from typical shot noise. Provided one or more photons are
received by the detector, a synapse event is communicated. The
Poisson distribution gives the probability that zero photons are
received. With an average number of five or greater photons transmit-
ted per synapse event, the probability of receiving zero photons is less
than 1%, a considerably lower error rate than biological synaptic trans-
mission.84 We assume each neuronal light source will generate 10 pho-
tons per synaptic event to accommodate 3 dB of propagation loss
while achieving 99% transmission success rate. All energy and power
consumption estimates presented here use this value.

C. Superconducting electronic neural systems

Many approaches to neural computing using superconducting
circuits leverage the nonlinear properties of Josephson junctions. The
objective of early superconducting neural circuits was to perform
the weighted summation and thresholding operations required in the
computational primitives of artificial neural networks.85,86 The circuits
employed were similar to those utilized in superconducting digital
logic, as were the basic concepts, such as using an up-down counter to
implement synaptic weights.86 From the beginning, and continuing to
the present,87–89 attention is paid to sculpting a sigmoidal transfer
function to implement backpropagation as well as alternative circuits
for achieving Hebbian-type learning.85

More recent efforts have broadened attention to consider also
spiking neural systems, leveraging the inherent threshold and spike
production of JJs.90,91 The most successful experimental effort to date
demonstrated coupling of two neurons based on JJs, with inter-spike
intervals on the order of tens of picoseconds.92 Additional progress
has been made in synaptic memory technology based on magnetic JJs,
wherein magnetic nanoclusters embedded in the tunneling barrier of a
JJ are re-oriented by current pulses, providing a means to modify the
junction critical current and dynamically reconfigure the response of a
synaptic circuit.91 Such devices offer similar functionality to memris-
tors being pursued for use in semiconductor-based neural systems.93

The superconducting circuits discussed in the present context
have much in common with other contemporary efforts in JJ-based

neural systems, particularly in the use of SQUIDs as the primary active
element.90,94 One point of contrast is that our emphasis is toward
high-capacity, analog flux-storage loops with diverse time constants as
well as utilization of complex neurons with a dendritic tree for hierar-
chical information processing within each neuron, whereas other
efforts are primarily focused on the high-speed92 and energy effi-
ciency88 enabled by the use of superconducting circuits. This distinc-
tion is minute in comparison to the difference introduced by the
choice to employ photonic communication. The challenge with using
superconducting electronics alone to enable large-scale cognitive sys-
tem is communication. In superconducting circuits, direct fan-out is
usually limited to two, so for neurons to make thousands of connec-
tions, many stages of pulse splitters and active transmission lines must
be employed. This leads to a cumbersome communication network
requiring many JJs and severe challenges for wiring and routing.
Reference 95 analyzed fan-out and fan-in in these systems and argued
there is no fundamental limit to fan-out. Fan-in was identified as a
limiting factor. However, the use of analog synaptic integration (SI)
loops with high inductance eliminates the fan-in bottleneck.36

Fan-out challenges with superconducting circuits are not funda-
mental, and reasonable researchers in the field can disagree about the
scale at which practical limits will be reached. For long-distance com-
munication, pulses produced by JJs must be regenerated along active
transmission lines. These transmission lines use JJs spaced periodically
to re-transmit pulses, and the spacing of these JJs is set by inductance
requirements. Using typical superconducting wires, a pitch of 100lm
between these junctions is expected, meaning a neuron trying to reach
a synapse on the other side of a 1 cm� 1 cm die will require 100 JJs for
communication to that synapse. At the scale of a 300mm wafer,
10 000 JJs would be required for long-range connections. Each of these
JJs must be provided with a current bias. While many synaptic connec-
tions are local, long-distance connections are paramount, as described
in Sec. II. Systems containing billions of neurons spread across hun-
dreds or thousands of wafers, extending over meters, connected with
active, superconducting transmission lines do not appear promising to
me. Such a communication network may not be fundamentally
impossible, but if the hardware for passive photonic communication
proves feasible, scaling to massively interconnected spiking neural sys-
tems will be greatly facilitated. Most researchers pursuing supercon-
ducting electronics for neural computing are not seeking this scale of
system.

D. Optoelectronic neural systems

The superconducting optoelectronic approach to large cognitive
systems described here utilizes similar superconducting circuits as
Refs. 91, 92, and 96 for synaptic, dendritic, and neuronal computation,
while leveraging light for communication, seeking scalability to mas-
sively interconnected systems. Optoelectronic integration may be most
straightforward when combining superconducting circuits with silicon
light sources operating at liquid helium temperature.

In addition to contrasting this approach to other existing work in
the field, it is necessary to also consider what may seem a more
straightforward route to optoelectronic intelligence. This route would
involve spiking neurons based on waveguide-integrated light sources,
as we have discussed, but instead of SPDs and JJs, semiconductor pho-
todiodes and transistors would be employed. Pursuit of such hardware
is impeded by the absence of light sources integrated with transistors.
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If there were a known means to integrate light sources as simple as
transistors with silicon microelectronics, the landscape of computing
would differ radically. Nevertheless, the proposition that supercon-
ducting electronics are more promising than photodiodes and
MOSFETs for this application requires justification.

Our choice to focus on the superconducting approach is based
primarily on three factors. First, superconducting SPDs dramatically
reduce the brightness required of the light sources. While semicon-
ducting detectors, such as avalanche photodiodes, can detect a single
photon, the energy consumption negates the benefits of single-photon
sensitivity in the system application under consideration. For scalable
system integration, the semiconductor counterpart to a waveguide-
integrated SPD working in conjunction with a JJ is a waveguide-
integrated photodiode working in conjunction with a MOSFET. Such
a semiconductor receiver is likely to require roughly 1000 photons to
charge the capacitance of the MOSFET gate97 to initiate a synapse
event. This factor of 1000 in photon power is matched by the factor of
1000 incurred to cool the superconducting system (see Secs. V and
VI), so the net power consumption for light generation in semicon-
ductor and superconductor systems is roughly equivalent. Yet the
important distinction is that the superconducting system dissipates
this power off chip in a cryocooler, whereas the semiconducting sys-
tem requires the light sources to produce this power in the form of
photons. Optoelectronic neural systems leveraging superconductors
can make due with light sources providing 10 000 photons within a
few tens of nanoseconds (30 nW continuous-wave equivalent), while a
semiconducting counterpart will require light sources 1000 times
brighter to attain the same firing rate. Achieving the former appears
possible with inexpensive silicon light sources, while the latter is likely
to require further advances in III-V sources. While exciting progress
continues to be made in III-V integration on silicon,98,99 a central chal-
lenge remains to integrate these light sources intimately with electron-
ics. The system under consideration requires fabrication of light
sources by the millions across 300-mm wafers, which will surely be
more cost effective if silicon devices as simple as transistors can be
employed for light emission,22 a possibility that appears more likely
with superconducting detectors and low-temperature operation.

The second factor driving our group to pursue the superconducting
approach relates to multi-planar wafer-scale integration. Whether semi-
conductors or superconductors are used, artificial synaptic, dendritic,
and neuronal circuits are not small. To accommodate millions of neu-
rons and their synapses on a 300-mmwafer, on the order of 20 planes of
photonic waveguides are required for communication, and a similar
number of planes of electronic circuits are likely to be advantageous. For
each plane of MOSFETs, high-temperature annealing steps are required
for dopant activation, leading to processing challenges when integrating
with metal wires, photonic waveguides, and light sources. This process-
ing challenge is one reason extension of MOSFET processes to multiple
stacked planes of transistors with copper interconnects has been difficult.
Power dissipation and heat removal also come into play but may be less
consequential in the context of spiking neurons with sparse activity.
Superconducting electronic circuits are processed near room tempera-
ture, and the prospect of integrating many planes of JJs, SPDs, and wave-
guides appears to us to be less restrictive. Multiple planes of active
SPDs100 and JJs101,102 have been demonstrated.

The third factor steering us toward superconducting electronics
relates to memory and learning. For a cognitive system of the scale

under consideration, synaptic weight modification must be unsuper-
vised and will be most readily realized if the signals that induce learn-
ing functions are the same signals, with the same current, voltage, or
light levels, used for computing within neurons, and sent to synapses
for communication. With superconducting circuits, single-flux quanta
are used for computing, and single photons are used for communica-
tion. It appears possible for these same signals to update synaptic
weights and enable learning, primarily by adjusting current biases to
JJs. A close functional analogy would be to modify the voltage on the
gate of a MOSFET in an analog manner, and indeed, this has long
been the ambition of floating-gate MOSFETs for synaptic memory.103

However, the voltages required to change the charge on the gate are
much higher than typical voltages used for computation elsewhere
within the circuit, making it difficult to implement unsupervised learn-
ing based only on the signals already present in the network. These
persistent challenges with floating gates have led many to look else-
where for suitable adaptive circuits.104 While any one of the emerging
approaches may lead to the desired memory operations, it is our per-
spective that the path to systems with lifelong learning and a multitude
of memory mechanisms appear less formidable with Josephson
circuits.

Despite these arguments in favor of superconducting electronics,
several valid counterpoints can be raised. The requisite silicon light
sources remain to be proven. Massively multi-planar fabrication of
superconducting optoelectronic wafers is an ambitious technological
undertaking. For many readers, the requirement of cryogenic opera-
tion is the most disconcerting aspect of the project. Several comments
are in order. Low-temperature operation eliminates such systems from
consideration for applications that require low system power con-
sumption, such as mobile devices. But for systems with a million neu-
rons, existing cryogenic technologies drawing a kilowatt of wall power
are suitable, comparable to a home air conditioner in power consump-
tion and complexity, but with cooling based on the thermodynamic
properties of liquid helium. For larger applications, cryogenic opera-
tion may prove an insurmountable obstacle, although the scale of
cryogenics used in superconducting magnets for particle colliders
offers hope. The field of quantum information also provides an
insightful lesson. Many types of qubits require operation at tens of
millikelvin, necessitating the extra expense and complexity of dilution
refrigerators. The environment at 4K is comparatively balmy, and the
required cryogenics are simpler and less expensive. Quantum informa-
tion presently enjoys tremendous investment because these systems
promise functions not otherwise possible. The same must be true of
optoelectronic intelligence if it is to have a future. Anything that can
be done with CMOS will be done with CMOS. If SOENs cannot
achieve AGI that is otherwise unattainable, they will not be brought
into existence. If they can attain unmatched cognition, someone is
likely to be willing to pay for them, unless the expense is astronomical.
The perspective presented here is that exactly this will come to pass:
superconducting optoelectronic hardware will enable AI that simply
cannot be achieved through other physical means. Low-temperature
operation will be justified by the performance.

The vast majority of the universe is in thermal equilibrium with
the cosmic microwave background at 2.7K, below the proposed oper-
ating temperature of SOENs. In such a setting, all system power con-
sumption estimates are reduced by a factor of 1000 from the numbers
presented here, and the energy consumption per synaptic operation
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rivals that of the human brain, while enabling firing rates orders of
magnitude faster. We should not expect technological intelligence to
share our disposition to an environment where water is liquid; they
may prefer to reside in an environment where helium condenses. If
our goal is to answer scientific questions regarding the physical limits
of cognition, low-temperature operation is not a fundamental
impediment.

V. SCALING AN OPTOELECTRONIC SYSTEM

The physics of light is complementary to that of electrons.
Photons can co-propagate on a waveguide independently without
capacitance. Waveguides can fan out without a charging penalty due
to wiring. This is not to say, photonic communication can address an
arbitrarily large number of recipients without consequence. For each
new recipient, the number of photons in a neuronal pulse must
increase. As destinations get further away, more energy is dissipated to
propagation loss. These realities notwithstanding, it is feasible for devi-
ces communicating with photons to make direct, independent connec-
tions to thousands of destinations, thereby eliminating the need for
the shared communication infrastructure that is the primary impedi-
ment to achieving AGI with electrical interconnections.

Having made this claim, the burden is upon us to provide evi-
dence of the feasibility of photonic communication in large-scale neu-
ral systems. The large wavelength of light relative to the size of
electronic devices causes concern for the size of optoelectronic brain-
scale networks. To build confidence for the feasibility of the endeavor,
I sketch here a vision of how such an optoelectronic neural system
may be constructed. At the foundation of this vision is the assumption
that the technology will utilize the fabrication infrastructure of silicon
electronics and photonics in conjunction with fiber optics for longer-
range communication.

At the wafer scale, light will be guided in multiple planes of
dielectric waveguides48,49 [Fig. 7(a)], just as integrated electronics
requires multiple wiring layers. To estimate the area of such photonic
interconnection networks, we follow Keyes105 and approximate the
number of neurons that can be supported on a 300-mm wafer by
N ¼ 2

ffiffiffi

2
p

r2ðp=wkinÞ2. Here, p is the number of planes of waveguides,
w is the waveguide pitch (1.5lm), kin is the number of waveguides
entering the neuron, and r¼ 150mm. The prefactor results from
assuming octagonal tiling. This expression is plotted in Fig. 6. The esti-
mate informs us that a 300-mm wafer with six waveguide planes can
support roughly one million neurons if they each have one thousand
connections. More involved analysis finds more planes may be
needed.36 As a point of comparison to electrical neural systems, Ref.
106 finds that through multi-layer, wafer-scale integration of logic and
memory, 250 � 106 electrical neurons could fit on a 300mm wafer.
The trade-off is speed, as the shared communication network would
limit the electrical neurons studied in Ref. 106 to 10Hz operation
when 1000 synaptic connections are made per neuron. Nevertheless,
the message of Fig. 6 is that photonic routing results in large area con-
sumption. An optoelectronic brain larger than that of a bumble bee
will not fit on a single 300-mmwafer.

Optoelectronic intelligence will require communication between
wafers. Wafers can be stacked vertically, and free-space optical links
can send photons from a source on one wafer to a detector on a wafer
above or below,107 as illustrated in Fig. 7(b). Assuming SPDs receiving
vertical communication have a pitch of 25lm, a 300-mm octagon

could support 108 vertical communication links between two wafers.
Considering wafers as laminar layers, as in cortex, such a configuration
would result in roughly 5% inter-layer connectivity, similar to the frac-
tion observed in mammals (Ref. 10, p. 286).

In addition to feed-forward and feedback free-space vertical cou-
pling, lateral inter-wafer communication can be achieved at wafer
edges, as shown in Fig. 7(c). In the tiling considered here, each wafer
makes such connections to neighbors in the cardinal directions. With
a 10lm pitch, 11 500 wafer-edge couplers could be supported in each
direction. Such a system would demonstrate strong connectivity
within the vertical stack of the wafers, and weaker lateral connectivity.
The reader may recognize the columnar organization of the cerebral
cortex.5

To achieve communication from within these columns to other
regions of the network, optical fibers are ideal. Within the tiling under
consideration, the square areas at diagonals between wafers can sup-
port fiber-optic bundles [Fig. 7(c)]. These optical fiber tracts are analo-
gous to white matter in the brain. One such region could house a
million single-mode fibers of 125lm diameter. These fibers will ema-
nate from all wafers within the column, and if six wafers are stacked in
a column, each wafer would have 167 000 output fibers to carry infor-
mation to other regions. With one million neurons on a wafer, not
every neuron would have access to a fiber for long-distance communi-
cation (unless wavelength multiplexing is employed). This again is
consistent with brain organization, wherein the number of long-
distance axons emanating from a region is smaller than the number
of neurons within the region. Each of these fibers can branch as it
extends through the white matter, so a neuron with access to a sin-
gle wafer-edge fiber can establish multiple long-range connections.
Recent progress in low-loss fiber-to-waveguide coupling108 indi-
cates a potential future direction for such integration of fibers with
on-chip waveguides, but significant advances in manufacturing are
required to realize the coupling of dense fiber bundles to 300-mm
wafers.

With this columnar configuration in mind, one can assess the
feasibility of constructing a system on the scale of the human cerebral
cortex (1010 neurons, each with thousands of synaptic connections). If
a wafer holds a million neurons, a cortex-scale assembly requires
10 000 wafers. Assuming the volume of white matter scales as the

FIG. 6. The total number of nodes that can fit on a 300 mm wafer (N300) as a func-
tion of the number of connections per node (k) for various numbers of waveguide
planes in the wire-limited regime.105
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volume of gray matter to the 4/3 power,109 the cortex-scale system
would fit in a volume two meters on a side. While optoelectronic neu-
rons are significantly bigger than their biological counterparts, it is not
the absolute size that limits system performance. The relevant quantity
for assessing scaling limitations is the ratio of the velocity of communi-
cation to the size of a neuron.36 Communication at the highest velocity
in the universe more than compensates the large device size.

Regarding power, a single 300-mm wafer with a million neurons
would dissipate one watt if the light production efficiency were
g ¼ 10�4, a conservative estimate. For the cortex-scale system of
10 000 wafers, the device power consumption with g ¼ 10�4 would be
10 kW. A further cooling-power penalty of one thousand would be
incurred if the system were operated in a background of 300K. Thus,
even in a conservative case of poor light production efficiency, an AGI
on the scale of the human brain would consume 10MW, the same
order as a modern supercomputer. We are considering a system with
roughly the same number of neurons and synapses as the human cere-
bral cortex, but with activity at 30 000 times the speed. While there is
high uncertainty associated with scaling estimates of such an imma-
ture technology, these calculations indicate that artificial brain-scale
systems with photonic communication and electronic computation

may be feasible, a possibility with profound implications for the future
of science and technology.

VI. SUMMARY AND DISCUSSION

I have argued that artificial neural hardware should be designed
and constructed to leverage photonic communication while perform-
ing synaptic, dendritic, and neuronal functions with electronic devices.
Superconducting optoelectronic circuits elegantly implement these
functions, in part because of the utility of Josephson nonlinearities for
neural computation, and also because superconducting detectors
enable few-photon signals, approaching the lowest possible energy for
optical communication. We have demonstrated all of the core compo-
nents and are working toward complete integration.

The approach to optoelectronic hardware described here is not
without limits, and different factors limit performance at different
scales. Regarding speed, the synaptic response is limited by the reset
time of the SPD, which is between 10 ns and 50ns depending on the
material used. A response time of 50 ns limits the maximum neuronal
firing frequency of the neuron to 20MHz. For the silicon light sources
we have primarily been pursuing, the emitter lifetime is on the order
of 40 ns,51 giving a maximum firing frequency comparable to the

FIG. 7. Hierarchical construction of optoelectronic neural systems. (a) Schematic of the process stack, with silicon light sources on a silicon-on-insulator wafer, waveguides
and detectors above, followed by the Josephson infrastructure and mutual inductors for dendritic processing. (b) Vertical photonic communication between two stacked wafers.
Liquid helium flows between the wafers of a column for cooling, and free-space links propagate without loss through the helium. The inset shows a schematic of a single
300 mm wafer, with neurons and routing, cut into an octagon for tiling. (c) Illustration of in-plane tiling. Lateral wafer-edge links connect wafers in a plane, and fiber optic bun-
dles fill the voids between wafers for long-range communication. (d) A large neural system with multiple large modules, each containing hundred to thousands of wafers,
enabled by photonic communication and the efficiency of superconducting detectors and electronics. Not shown is the fiber-optic white matter that would be woven through the
voids between the octagons in this example hierarchical tiling.
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20MHz figure determined by the speed of SPDs. In biological neural
systems, conduction delays are an important factor limiting speed.
Using light for communication greatly alleviates this concern, yet there
does exist a scale at which the speed of light becomes the limiting fac-
tor. Within the 50ns reset time of the SPD or the comparable 40 ns
lifetime of the silicon emitters, light can travel 10 m in fiber. A system
of this linear extent would contain at least an order of magnitude
more neurons than an entire human brain. The scale set by this speed
limit does not represent the maximum possible scale of an optoelec-
tronic neural system, but rather the maximum possible volume of neu-
rons that can communicate within the highest frequency oscillations
of the system.

Regarding power consumption, cryogenic cooling plays a key
role. The power required for cooling contains two contributions: the
base-level power required to keep the environment below the super-
conducting transition temperature, even when the devices are inactive,
and the additional cooling power required to remove excess heat gen-
erated by the activity of the circuits. The first factor is a few hundred
watts for small systems, while the second factor is typically about one
kilowatt of extra cooling power per watt of power dissipated by the
devices. For small systems comprising a few thousand neurons each
with a few hundred synapses on a 1 cm� 1 cm die, the devices will dis-
sipate around a milliwatt,36 so the first factor dwarfs the second. The
second factor does match the first until intermediate-scale systems
with tens to hundreds of interconnected wafers, each dissipating 1W
when active. It is somewhere between the scale of a few thousand neu-
rons on a die and a few million neurons interconnected across several
wafers that we expect the performance of the system to exceed what
can be accomplished without photonic communication and supercon-
ducting electronic computation. For large systems in excess of hun-
dreds of interconnected wafers, the power dissipated by the active
devices on the wafer and the associated cooling costs dominate. The
power consumed by each wafer contains contributions from light
sources, detectors at synapses, and JJs performing computations within
dendrites and neurons. If light sources can be realized with 1% effi-
ciency, each of these circuit components will contribute nearly equally
to the total system power consumption.43

Despite these limits, this approach to AGI appears possible for
physical and practical reasons. Physically, due to photonic signaling, it
is possible to achieve efficient communication across the network for
systems with orders of magnitude more than the 10 000 wafers com-
prising a brain-scale system. Reference 36 explores the
communication-limited size of the system as a function of the fre-
quency of network oscillations. Specialized processors with activity at
20MHz (the gamma firing rate of loop neurons) can span an area
10 m on a side before delays limit communication. Modules with
activity at 1MHz (the frequency of corresponding theta oscillations in
this system) could integrate information across an area the size of a
data center within a single theta cycle.

On the practical side, fabrication of SOENs at industrial scale
appears feasible. All the proposed circuits can be created on 300-mm
wafers with existing infrastructure, such as a 45-nm CMOS node. Ten
thousand wafers move through such a foundry every day. If dedicated
to fabrication of optoelectronic intelligence, a foundry could produce
multiple brain-scale systems per year. While the devices employed
here depart from conventional silicon microelectronics, the same fab-
rication infrastructure can be employed.

What are the next steps to realize loop neurons and SOENs?
Low-cost source-detector integration at the wafer scale is required.
Demonstration of requisite plasticity functions would be an important
milestone. Multi-planar integration of superconducting electronics
would further build momentum. Active devices must be augmented
with improvements in deposited dielectrics to enable many planes of
routing waveguides with low loss. Hardware improvements will not
lead to AGI without further theoretical insights. Conceptual advances
are required to achieve high-performance neural systems, train them,
and make them intelligent.
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